NFATc1 regulates lymphatic endothelial development
نویسندگان
چکیده
NFATc1 transcription factor is critical for lineage selection in T-cell differentiation, cardiac valve morphogenesis and osteoclastogenesis. We identified a role for calcineurin-NFAT signaling in lymphatic development and patterning. NFATc1 was colocalized with lymphatic markers Prox-1, VEGFR-3 and podoplanin on cardinal vein as lymphatic endothelial cells (LEC) are specified and as they segregate into lymph sacs and mature lymphatics. In NFATc1 null mice, Prox-1, VEGFR-3 and podoplanin positive endothelial cells sprouted from the cardinal vein at E11.5, but poorly coalesced into lymph sacs. NFAT activation requires the phosphatase calcineurin. Embryos treated in utero with the calcineurin inhibitor cyclosporine-A showed cytoplasmic NFATc1, diminished podoplanin and FGFR-3 expression by the lymphatics and irregular patterning of the LEC sprouts coming off the jugular lymph sac, which suggests a role for calcineurin-NFAT signaling in lymphatic patterning. In a murine model of injury-induced lymphangiogenesis, NFATc1 was expressed on the neolymphatics induced by lung-specific overexpression of VEGF-A. Mice lacking the calcineurin Abeta regulatory subunit, with diminished nuclear NFAT, failed to respond to VEGF-A with increased lymphangiogenesis. In vitro, endogenous and VEGF-A-induced VEGFR-3 and podoplanin expression by human microvascular endothelial cells was reduced by siRNA to NFATc1, to levels comparable to reductions seen with siRNA to Prox-1. In reporter assays, NFATc1 activated lymphatic specific gene promoters. These results demonstrate the role of calcineurin-NFAT pathway in lymphangiogenesis and suggest that NFATc1 is the principle NFAT involved.
منابع مشابه
FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1
The mechanisms of blood vessel maturation into distinct parts of the blood vasculature such as arteries, veins, and capillaries have been the subject of intense investigation over recent years. In contrast, our knowledge of lymphatic vessel maturation is still fragmentary. In this study, we provide a molecular and morphological characterization of the major steps in the maturation of the primar...
متن کاملVASCULAR BIOLOGY ALK1 signaling regulates early postnatal lymphatic vessel development
In vertebrates, endothelial cells form 2 hierarchical tubular networks, the blood vessels and the lymphatic vessels. Despite the difference in their structure and function and genetic programs that dictate their morphogenesis, common signaling pathways have been recognized that regulate both vascular systems. ALK1 is a member of the transforming growth factortype I family of receptors, and comp...
متن کاملDrainage developers
Drainage developers O ur bodies' tissues need continuous irrigation and drainage. Blood vessels feeding the tissues bring in the fl uids, and drainage occurs via the lymphatic system. Whereas much is known about how blood vessels are built, the same was not true for lymph vessels. Now though, Norrmén et al. have identifi ed two of the lead engineers that direct drainage construc-tion—the transc...
متن کاملWhy increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms.
This overview provides insight into the underlying genetic mechanism of the high incidence of cardiac defects in fetuses with increased nuchal translucency (NT). Nuchal edema, the morphological equivalent of increased NT, is likely to result from abnormal lymphatic development and is strongly related to cardiac defects. The underlying genetic pathways are, however, unknown. This study aims to p...
متن کاملALK1 signaling regulates early postnatal lymphatic vessel development.
In vertebrates, endothelial cells form 2 hierarchical tubular networks, the blood vessels and the lymphatic vessels. Despite the difference in their structure and function and genetic programs that dictate their morphogenesis, common signaling pathways have been recognized that regulate both vascular systems. ALK1 is a member of the transforming growth factor-beta type I family of receptors, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 126 شماره
صفحات -
تاریخ انتشار 2009